Addition Theorems for General Legendre and Gegenbauer Functions

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reconstruction of sparse Legendre and Gegenbauer expansions

Recently the reconstruction of sparse trigonometric polynomials has attained much attention. There exist recovery methods based on random sampling related to compressed sensing (see e.g. [17, 10, 5, 4] and the references therein) and methods based on deterministic sampling related to Prony–like methods (see e.g. [15] and the references therein). Both methods are already generalized to other pol...

متن کامل

Generalizations and Specializations of Generating Functions for Jacobi, Gegenbauer, Chebyshev and Legendre Polynomials with Definite Integrals

In this paper we generalize and specialize generating functions for classical orthogonal polynomials, namely Jacobi, Gegenbauer, Chebyshev and Legendre polynomials. We derive a generalization of the generating function for Gegenbauer polynomials through extension a two element sequence of generating functions for Jacobi polynomials. Specializations of generating functions are accomplished throu...

متن کامل

Fourier, Gegenbauer and Jacobi Expansions for a Power-Law Fundamental Solution of the Polyharmonic Equation and Polyspherical Addition Theorems

We develop complex Jacobi, Gegenbauer and Chebyshev polynomial expansions for the kernels associated with power-law fundamental solutions of the polyharmonic equation on d-dimensional Euclidean space. From these series representations we derive Fourier expansions in certain rotationally-invariant coordinate systems and Gegenbauer polynomial expansions in Vilenkin’s polyspherical coordinates. We...

متن کامل

Legendre theorems for subclasses of overpartitions

A. M. Legendre noted that Euler’s pentagonal number theorem implies that the number of partitions of n into an even number of distinct parts almost always equals the number of partitions of n into an odd number of distinct parts (the exceptions occur when n is a pentagonal number). Subsequently other classes of partitions, including overpartitions, have yielded related Legendre theorems. In thi...

متن کامل

Exactly Solvable Chaos and Addition Theorems of Elliptic Functions

We review recent developments about a systematic method of constructing of rational mappings as ergordic transformations with nonuniform invariant measures on the unit interval I = [0, 1]. All rational ergordic mappings of I with explicit non-uniform densities can be characterized by addition theorems of elliptic functions. We call this special class of chaotic mappings exactly solvable chaos a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Indiana University Mathematics Journal

سال: 1955

ISSN: 0022-2518

DOI: 10.1512/iumj.1955.4.54039